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Abstract 

 

 Hybrid ensemble/3-dimensional variational analysis schemes incorporate flow-

dependent, ensemble-estimated background-error covariances into the 3-dimensional 

variational (3D-Var) framework. Typically the 3D-Var background-error covariance 

estimate is assumed to be stationary, nearly homogeneous and isotropic. A hybrid scheme 

can be achieved by directly replacing the background-error covariance term in the cost 

function by a linear combination of the original background-error covariance with the 

ensemble covariance or through augmenting the state vector with another set of control 

variables preconditioned upon the square root of the ensemble covariance. These 

differently proposed hybrid schemes are proved to be equivalent. The latter framework 

may be a simpler way to incorporate ensemble information into operational 3-

dimensional variational schemes, where the preconditioning is performed with respect to 

the background term. 
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1. Introduction 

 

 Present 3-dimensional variational data assimilation schemes (3D-var; e.g., 

Parrish and Derber 1992; Courtier et al. 1998; Gauthier et al. 1998) typically assume that 

the background-error covariances are stationary, and nearly homogeneous and isotropic, 

while in fact the error covariances may vary substantially with the flow of the day. 

Several approaches have been proposed to relax these assumptions in 3D-Var. Fisher and 

Courtier (1995) suggested an approach to developing flow-dependent background 

covariances in the variational data assimilation, in which the leading eigenvectors of the 

background error covariance matrix are explicitly estimated. Techniques are also being 

developed to include some spatial inhomogeneity and anisotropy in 3D-Var (e.g., 

Desroziers 1997; Riishøjgaard 1998; Purser et al. 2003; Wu et al. 2002). Another 

different approach is to blend in flow-dependent error covariances estimated by an 

ensemble into the variational framework (Barker 1999; Hamill and Snyder 2000; Lorenc 

2003; Etherton and Bishop 2004; Buehner 2005; Wang et al. 2005). These latter methods 

are known as hybrid ensemble-variational schemes, or more simply here as hybrid 

schemes.  In this paper we focus on discussing the differently proposed hybrid ensemble-

variational schemes. 

 A hybrid scheme was proposed and tested by Hamill and Snyder (2000), 

hereafter “HS00.”  In that study, the background-error covariance was explicitly replaced 

by a linear combination of the 3D-Var background-error covariance and the sample 

ensemble covariance. Each member was then updated variationally with perturbed 

observations. Parallel assimilations and forecasts were cycled forward, as in a traditional 
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ensemble Kalman filter scheme (e.g., Houtekamer and Mitchell 1998, 2001; Houtekamer 

et al. 2005). Later, Etherton and Bishop (2004) and Wang et al. (2005) provided an 

implementation of HS00, where the ensemble perturbations were updated by the 

ensemble transform Kalman filter (ETKF; Bishop et al. 2001, Wang and Bishop 2003, 

Wang et al. 2004) and the background error covariance for updating the mean state was 

given by an explicit sum of the ETKF ensemble covariance and the standard 3DVAR 

covariance.  

 Lorenc (2003, hereafter L03) proposed another form of the hybrid variational 

scheme for updating the state, where the control variables in the cost function were 

augmented by another set of control variables, preconditioned upon the square root of the 

ensemble covariance. He also showed how a localizing Schur product, which will reduce 

the effects of sampling error in the ensemble covariances, could be implemented in the 

variational framework with preconditioning. Buehner (2005; hereafter B05) adopted a 

hybrid framework similar to L03 to incorporate the ensemble covariance output from the 

ensemble Kalman filter (EnKF) into the 3D-Var system.  Another implementation of the 

Schur product for covariance localization was also proposed by B05. 

Hybrid schemes present a possible alternative to the canonical ensemble data 

assimilation schemes (e.g., Evensen 1994; Burgers et al. 1998; Anderson 2001; Bishop et 

al. 2001; Whitaker and Hamill 2002; Whitaker and Hamill 2005; Snyder and Zhang 

2003; Zhang et al. 2004; Ott et al. 2004; Szunyogh et al. 2005; Houtekamer and Mitchell 

1998, 2001,2005; Houtekamer et al. 2005).  Unlike the ensemble data assimilation 

schemes that adopt a framework completely different from the existing variational 

scheme, the hybrid schemes begin with existing variational systems and thus can be built 
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as incremental changes to the existing variational codes.  Hybrids may be less 

computationally expensive than the ensemble data assimilation schemes. Since many of 

the ensemble data assimilation schemes assimilate observations serially, their 

computational expense typically scales not only with the number of ensemble members 

and the dimension of the model state, but also with the number of observations. This may 

be a concern for operational applications, as the number of observations is huge and still 

growing with each passing year. In comparison, the computational expense of variational 

techniques currently used in operational centers do not scale linearly with the number of 

observations.  Another potential advantage of hybrids is the ease of applying variational 

quality control (L03). Consequently, if hybrid methods can achieve much of the potential 

error reduction of these ensemble filters (Wang et al. 2005), then they may provide an 

attractive alternative for operational centers where variational data assimiation is 

established and ensemble forecasts are available or a suitable and efficient method can be 

found to form the background ensemble.   

The hybrid schemes proposed by HS00 and by L03 and B05 differ in the way that 

they incorporate the ensemble-covariance information into the cost function, though L03 

and B05 state without proof that the schemes are equivalent or similar. The purpose of 

this note is to provide a proof that the variational state update steps for the two hybrid 

schemes proposed by HS00, and by L03 and B05 are mathematically equivalent.  Also, 

we show that the methods that L03 and B05 proposed to implement a localizing Schur 

product in the variational framework with preconditioning are equivalent.  Because 

augmenting the control vector as in L03 and B05 may be easier to implement within 

those variational systems in which the preconditioning is with respect to the background 
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term, this may provide a convenient pathway for the incorporation of ensemble 

information into many operational analysis schemes. 

Below, section 2 will provide a detailed proof of the equivalence of the two 

proposed hybrid schemes. Section 3 discusses operational applications of the hybrid 

schemes.  Section 4 concludes the paper. 

 

2. Proof of equivalence of the hybrid schemes 

 

 In HS00, the cost function associated with the hybrid ensemble-3D-Var 

background-error covariance is 

                  
  

! 

J =
1

2
x " x

b( )
T

B
"1
x " x

b( ) +
1

2
H x( ) " y( )

T

R
"1
H x( ) " y( ),                             (1) 

where b
x  is a vector of background forecast, y  contains the observations, R  is the 

observation error covariance matrix,  and 

! 

H  is the operator mapping from the model 

space to the observation space. The hybrid background-error covariance matrix B  is 

given by the linear combination of the 3D-Var covariance matrix   

! 

B
1
 and the ensemble 

covariance   

! 

B
2
, i.e., 

                                               

! 

B = "
1
B
1
+"

2
B
2
,                                                         (2) 

where 
1

!  and 
2

!  are the scalar linear combination coefficients. In HS00, 
21

1 !! "= .  

Note covariance localization can be applied on the ensemble covariance   

! 

B
2
 through a 

Schur, or element by element, product with a compactly supported correlation matrix 

(e.g., Houtekamer and Mitchell 2001).  Further defining the analysis increment as 

b
xxx !=" , then (1) becomes 
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! 

J =
1

2
"x( )

T

B
#1
"x( ) +

1

2
H x

b + "x( ) # y( )
T

R
#1
H x

b + "x( ) # y( ).                    (3) 

This is the quadratic minimization problem solved in the “inner loop” of incremental 

variational schemes. The goal of HS00’s hybrid scheme, is then to find x!  to minimize 

(3). 

 L03 and B05 employ a different approach to incorporate ensemble information in 

the cost function.  They represent the analysis increment as 

                                                 

! 

"x = #
1
"x

1
+ #

2
"x

2
,                                                (4) 

                                                    
  

! 

"x
1

= B
1( )
1/ 2

v
1
,                                                   (5) 

                                                    
  

! 

"x
2

= B
2( )
1/ 2

v
2
,                                                  (6) 

and the associated cost function is    

           
  

! 

J =
1

2
v
1

T

v
1

+
1

2
v
2

T

v
2

+
1

2
H x

b + "x( ) # y( )
T

R
#1
H x

b + "x( ) # y( ).                    (7) 

! 

v
1
 is a vector of the standard 3D-Var control variables associated with the traditional 3D-

Var transform 
  

! 

B
1( )
1/ 2

.  The vector 

! 

v
2
 is the augmented part of the control variable, which 

is associated with the ensemble covariance. The scalars 
1
!  and 

2
!  are the weighting 

coefficients to combine the two increments 

! 

"x
1
 and 

! 

"x
2
.  This choice of control 

variables also preconditions the background term in (7), as is common in variational 

methods (e.g., Parrish and Derber 1992; Gauthier et al. 1999; Courtier et al. 1998). 

 In (6), 
  

! 

B
2( )
1/ 2

is the square root of the ensemble covariance. If no covariance 

localization is applied, 
  

! 

B
2( )
1/ 2

 is simply the rectangular matrix whose columns are the 

ensemble perturbations divided by 

! 

K "1, where 

! 

K  is the ensemble size.  
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Both L03 and B05 proposed methods to implement covariance localization on the 

ensemble covariance in a variational system with preconditioning.  As shown in the 

appendix of this note and (B.3) of B05, B05 found the square root of the localized 

ensemble covariance. Thus the form of the cost function by B05 with covariance 

localization implemented is still the same as (4-7). After incorporating covariance 

localization, the cost function of L03 (his eq.17) is a bit different from (6). As shown in 

the appendix, the cost functions incorporating the correlation matrix by L03 can be 

manipulated into the same form of B05. Thus in the following proof, for simplicity, we 

use the general formulation (4-7) to represent the extended control variable method for 

both L03 and B05. The goal of L03 and B05’s hybrid scheme is then to find the control 

vectors 

! 

v
1
 and 

! 

v
2
 to minimize (7) and reconstruct the increment by (4-6). 

 When 
11

!" =  and 
22

!" = , the hybrid variational methods proposed by 

HS00 and L03 are mathematically equivalent in the sense that minimizing (3) and (7) 

produces the same analysis increment.  This can be shown as follows: 

 To find x!  that minimizes (3), we set the first-order derivative of (3) with respect 

to x!  equal to zero, i.e., 

! 

"J

"#x
= 0 , which gives  

                                 
  

! 

"x + BH
T
R

#1
H x

b + "x( ) # y( ) = 0,                                          (8) 

where 
  

! 

H "
#H x( )
#x

, evaluated at the 

! 

x  that satisfies (8). Solutions for (8) can be found 

iteratively when the observation operator 

! 

H  is nonlinear. If the observation operator is 

linear or it is weakly nonlinear and 

! 

x
b
 is reasonably accurate, then explicit solutions can 
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be derived. For details, please refer to Lorenc (1986, 1988), Daley (1991), Parrish and 

Derber (1992) and Daley and Barker (2001). 

 Next we find the analysis increment associated with minimizing (7) with respect 

to 

! 

v
1
 and 

! 

v
2
.  To minimize (7), 

! 

v
1
 and 

! 

v
2
 must satisfy 

! 

"J

"v
1

= 0 and 

! 

"J

"v
2

= 0 , which gives 

                                
  

! 

v
1
+ H"

1
B
1( )
1/ 2# 

$ 
% 

& 

' 
( 
T

R
)1
H x

b + *x( ) ) y( ) = 0 ,                                (9) 

                               
  

! 

v
2

+ H"
2

B
2( )
1/ 2# 

$ 
% 

& 

' 
( 
T

R
)1
H x

b + *x( ) ) y( ) = 0,                              (10) 

where 

! 

"x  is given by (4-6). Pre-multiplying (9) by 21

11

/
B! , pre-multiplying (10) by 

21

22

/
B! , adding both sides of the subsequent two equations, and using (4), yields 

                         
  

! 

"x + #
1

2

B
1
+ #

2

2

B
2

$ 
% 
& ' 

( 
) HT

R
*1
H x

b + "x( ) * y( ) = 0.                             (11) 

So, if 
11

!" =  and
22

!" = , we can further substitute (2), the HS00 background-error 

covariance, into (11) and then obtain (8).  Consequently, the L03 and B05’s increment 

satisfies the same equation as HS00’s increment.  

The above proof shows that the analysis increment from (3) and (4-7) will 

converge to the same solution and thus the two differently proposed hybrid schemes are 

equivalent. 

  

3. Discussions on operational applications 

 

To apply the HS00 hybrid variational framework (3) operationally, the hybrid 

background-error covariance given by (2) will need to be preconditioned to speed the 
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minimization process.  In comparison, the L03 and B05 hybrid framework (7) may be 

easier to implement for the variational framework where the preconditioning is with 

respect to the background term (e.g., Lorenc et al. 2000, Gauthier et al. 1999, Lorenc 

2003, Barker et al 2004). In this case, one just needs to extend the traditional control 

variables and existing preconditioners can be used.   

With the approach of L03 and B05, as discussed in the appendix, one can use the 

ensemble perturbations to construct the square root of the ensemble covariance in (7), 

assuming an ensemble that is representative of background forecast errors has been 

generated. The additional control variables then has dimension equal to the ensemble size 

! 

K .  In this case the computational cost incurred by including the extra control variables is 

small given the ensemble size 

! 

K  is O(100) or less in current operational usage. To reduce 

the sampling error associated with the limited ensemble size, one can adopt the localizing 

Schur product proposed by L03 and B05. However, in this case the number of extra 

control variables is increased to 

! 

K " r, where 

! 

r  is the rank of the prescribed correlation 

matrix (see appendix for details and B05).  As discussed in B05, and from the 

experiments implementing the L03 framework within UK Met Office variational 

assimilation (Barker 1999) and the Weather Research and Forecast Model variational 

assimilation (Dale Barker, personal communication 2005), using a spectrally truncated 

expansion to represent the prescribed correlation matrix can reduce the cost.   

The method proposed in L03 and B05 to incorporate the ensemble covariance by 

augmenting the control variables is particularly suitable for model-space variational 

schemes that precondition with respect to the background term (e.g., Lorenc et al. 2000, 

Gauthier et al. 1999, Lorenc 2003, Barker et al. 2004).   For observation-space schemes, 
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such as the Naval Research Laboratory Atmospheric Variational Data Assimilation 

System (NAVDAS; Daley and Barker 2001), an observation-space preconditioner is used 

and thus no square root of the model-space background covariance matrix is required. 

Such systems can hybridize the ensemble covariance by directly linearly combining the 

ensemble covariance with the standard 3DVAR covariance (Craig H. Bishop, personal 

communication, 2005).  

The next question is how to find an appropriate ensemble. Perhaps short-term 

forecasts from operational systems could be used as the background ensemble in (7).  

However, the improvement in hybrid analysis accuracy over a more standard variational 

approach may depend substantially upon the specific method of ensemble generation. 

Ideally, the ensemble should be drawn from the distribution of background forecast errors 

and will depend on the prior observations and the chaotic error growth of the day.  

Operational ensemble techniques may not be optimized for this application (e.g., Hamill 

et al. 2000).  Another candidate for the ensemble generation may be the ensemble 

transform Kalman filter (ETKF; Bishop et al. 2001; Wang and Bishop 2003; Wang et al. 

2004), which has been shown to provide inexpensive but relatively skillful ensemble 

forecasts and is designed specifically to produce forecasts that realistically account for 

the error reduction by assimilation of observations and the subsequent growth of errors 

during the forecast.  Recent work comparing the hybrid ETKF-3DVAR and the ensemble 

square root filter (EnSRF) suggests that the hybrid ETKF-3DVAR can achieve a large 

portion of the improvement of the EnSRF over the 3DVAR (Wang et al. 2005). 

 

4. Conclusions 
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In hybrid ensemble/variational data assimilation schemes, ensemble covariances 

that reflect flow-dependent forecast-error uncertainty are incorporated into the variational 

framework. Methods have been proposed to achieve this. In Hamill and Snyder (2000), 

the background error covariance was defined explicitly as a linear combination of the 

standard 3DVAR covariance and the ensemble covariance. In Lorenc (2003) and Buehner 

(2005), the original variational control variables were extended by another set of control 

variables preconditioned upon the square root of the ensemble covariance. They also 

suggested how to incorporate a localizing Schur product to the variational framework 

with preconditioning. Here we have demonstrated that the hybrid schemes proposed by 

Hamill and Snyder (2000), Lorenc (2003) and Buehner (2005) are mathematically 

equivalent. Assuming a suitable ensemble has been constructed, the Lorenc (2003) and 

Buehner (2004) framework should be easier to apply in model-space variational schemes 

where preconditioning is performed with respect to the background term. For operational 

centers that run ensemble forecasts and variational data assimilation, the hybrid scheme 

may provide an effective and feasible way to improve the analysis without the cost of a 

full implementation of an ensemble-based data assimilation approach.   
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Appendix 

On the equivalence of Lorenc (2003) and Buehner (2005) in implementing localized 

ensemble covariance in the variational framework with preconditioning 

  

Denote 
    

! 

X
f = x

1

,
,x

2

,
,K,xK

,( ) as the deviation from the ensemble mean normalized 

by 

! 

K "1, where 

! 

K  is the ensemble size. The sample ensemble covariance is 

  

! 

P = X
f

X
f( )
T

. Thus, if no covariance localization is applied, in (6), 
  

! 

B
2( )
1/ 2

= X
f , an 

! 

N "K  rectangular matrix, where 

! 

N  is the dimension of the state vector, and 

! 

v
2
 is a 

vector of 

! 

K  elements.  

Further denote   

! 

S as the prescribed correlation matrix used for covariance 

localization. Then the localized ensemble covariance is the Schur product of   

! 

P  and   

! 

S, 

i.e.,     

! 

PoS. In order to match this localized ensemble covariance in the variational 

framework with preconditioning, B05 modified (6) as followed. First 
  

! 

B
2( )
1/ 2

 is defined as  

                 
    

! 

B
2( )
1/ 2

= diag x
1

,( )S
1/ 2

,diag x
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,( )S
1/ 2

,K,diag xK
,( )S

1/ 2[ ] ,                            (A.1) 

where 
  

! 

diag x k
,( ),     

! 

k = 1,K,K ,  represents a matrix with vector   

! 

x
k

,  along its diagonal. It 

was shown in B05 that (A.1) satisfies 
    

! 

B
2( )
1/ 2

B
2( )
1/ 2" 

# $ 
% 
& ' 

T

= PoS.  The associated extended 

control variables are defined as  
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v
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v
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v
2K
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where 

! 

v
2k

,     

! 

k = 1,K,K , is a vector of 

! 

r  elements. Note 

! 

r  is the rank of   

! 

S. With other 

terms in (7) unchanged, the second term of the cost function is then given by the inner 

product of (A.2) and the 

! 

"x
2
 term in (6) is given by (A.1) times (A.2) instead. B05’s cost 

function with covariance localization has the same form as (4-7). 

L03 incorporated   

! 

S in the cost function in a different form (see eq. 17 of L03).  

The second term of the cost function is redefined as 

                            

    

! 

J
2

=
1

2
a
T

S 0

O

0 S

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

(1

a ,                                                (A.3) 

where the block diagonal matrix is constructed by listing 

! 

K  correlation matrices   

! 

S. In 

(A.3) the newly defined extended control variables are 

                                                    

  

! 

a =

a
1

a
2

M

a
K

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

,                                                       (A.4) 

and each of 

! 

a
k
,     

! 

k = 1,L,K , is a vector of 

! 

N  elements. The 

! 

"x
2
 term is modified as  

                                                 
    

! 

"x
2

= X
f
o A( )1,                                                     (A.5) 

where 
    

! 

A = a
1
,a

2
,K,a

K( ),     

! 

X
f
o A  is the Schur product of   

! 

X
f  and   

! 

A , and 

! 

1 is a vector of 

! 

K  elements that are all equal to one. 

Next we show that by linearly transforming 

! 

a , L03’s cost function with 

covariance localization incorporated, can be manipulated into the same format as that of 

B05.  Thus they will lead to the same solution. 

We further define a new set of extended control variables 

! 

v
2
, which are linearly 

related to 

! 

a  by 
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a =

S
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O
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1/ 2
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' 
' 
' 
v
2
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where 

! 

v
2
 is given by (A.2). Substituting (A.6) into (A.3), then the second term of the cost 

function becomes the inner product of 

! 

v
2
, the same as B05.   

Further substituting (A.6) into   

! 

A , we obtain 

                                                    

! 

A = S
1/ 2

V ,                                                        (A.7) 

where 
    

! 

V = v
21

,v
22

,K,v
2K( ).  Thus (A.5) becomes 

                                            
    

! 

"x
2

= X
f
o S

1/ 2
V( )[ ]1.                                                 (A.8) 

Next we need to show that, 

! 

"x
2
, defined as (A.1) times (A.2) by B05 and as (A.8) by 

L03 are the same.  

 Denoting 
  

! 

V = vij( ) ,     

! 

i = 1,K,r ,     

! 

j = 1,K,K ; 
  

! 

S
1/ 2 = sij( ) ,     

! 

i = 1,K,N ,     

! 

j = 1,K,r; 

  

! 

X
f = xij( ),     

! 

i = 1,K,N ,     

! 

j = 1,K,K ; 
  

! 

A = S
1/ 2

V = aij( ),     

! 

i = 1,K,N ,     

! 

j = 1,K,K ., and 

writing (A.8) in element format, we obtain the ith element of 

! 

"x
2
 by L03 as 

                       

! 

"x
2( )

i
= xij

j=1

K

# aij = xij
j=1

K

# sim
m=1

r

# vmj = xijsim
m=1

r

# vmj
j=1

K

# .                         (A.9) 

Substituting (A.1) and (A.2) into (6), we obtain 

! 

"x
2
 by B05 as 

                                        
  

! 

"x
2

= diag x k( )S
1/ 2( )v2k

k=1

K

# .                                           (A.10) 

Denote 
  

! 

Dk = diag x k( )S
1/ 2 = dij( )

k
,     

! 

i = 1,K,N ,     

! 

j = 1,K,r ,     

! 

k = 1,K,K , and note that 

! 

dij( )
k

= sij xik . Substituting 

! 

dij( )
k
 into (A.10) and writing in element format, we obtain the 

ith element of 

! 

"x
2
 by B05 as 
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! 

"x
2( )

i
= dij( )

k
v jk

j=1

r

#
$ 

% 
& & 

' 

( 
) ) 

k=1

K

# = sij xikv jk

j=1

r

#
$ 

% 
& & 

' 

( 
) ) 

k=1

K

# = sij xikv jk

j=1

r

#
k=1

K

# .                   (A.11) 

From (A.9) and (A.11), the 

! 

"x
2
 terms in L03 and B05, with the localized ensemble 

covariance incorporated, are the same. 

 To summarize, the above shows that after linear transformation on the extended 

control variables, L03’s cost function with covariance localization applied has the same 

form as B05.  In other words, it can be written as (4-7). 
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